热线电话

课程咨询:

029-88326455

客服热线:

029-89196077

在线咨询

获取方案

四年级思维数学重点难题及答案(一)

发布日期:2015-10-06

哈利博特教育为您总结小学四年级思维数学重难点题型如下:

四年级思维数学题:速算与巧算(一)

1.【试题】计算999999999999999

2【试题】计算19999919999199919919

3【试题】计算(2+4+6++996+998+1000)--(1+3+5++995+997+999)

4【试题】计算 9999×22223333×3334

5.【试题】56×3+56×27+56×96-56×57+56

6.【试题】计算98766×9876898765×98769

 

四年级思维数学题:年龄问题

1、父亲45岁,儿子23岁。问几年前父亲年龄是儿子的2倍?

2、李老师的年龄比刘红的2倍多8岁,李老师10年前的年龄和王刚8年后的年龄相等。问李老师和王刚各多少岁?

3、姐妹两人三年后年龄之和为27岁,妹妹现在的年龄恰好等于姐姐年龄的一半,求姐妹二人年龄各为多少。

4、小象问大象妈妈:“妈妈,我长到您现在这么大时,你有多少岁了?”妈妈回答说:“我有28岁了”。小象又问:“您像我这么大时,我有几岁呢?”妈妈回答:“你才1岁。”问大象妈妈有多少岁了?

5、大熊猫的年龄是小熊猫的3倍,再过4年,大熊猫的年龄与小熊猫年龄的和为28岁。问大、小熊猫各几岁?

615年前父亲年龄是儿子的7倍,10年后,父亲年龄是儿子的2倍。求父亲、儿子各多少岁。

7、王涛的爷爷比奶奶大2岁,爸爸比妈妈大2岁,全家五口人共200岁。已知爷爷年龄是王涛的5倍,爸爸年龄在四年前是王涛的4倍,问王涛全家人各是多少岁?

 

四年级思维数学题:牛吃草问题解析

    历史起源:英国数学家牛顿(16421727)说过:“在学习科学的时候,题目比规则还有用些”因此在他的著作中,每当阐述理论时,总是把许多实例放在一起。在牛顿的《普遍的算术》一书中,有一个关于求牛和头数的题目,人们称之为牛顿的牛吃草问题。

 

主要类型:

1、求时间

2、求头数

 

除了总结这两种类型问题相应的解法,在实践中还要有培养运用“牛吃草问题”的解题思想解决实际问题的能力。

基本思路:

①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。

②已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。

③根据(“原有草量”+若干天里新生草量)÷天数”,求出只数。

基本公式:

解决牛吃草问题常用到四个基本公式,分别是∶

(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数)

(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;

(3)吃的天数=原有草量÷(牛头数-草的生长速度)

(4)牛头数=原有草量÷吃的天数+草的生长速度

 

第一种:一般解法

“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。”

一般解法:把一头牛一天所吃的牧草看作1,那么就有:

(1)27头牛6天所吃的牧草为:27×6162 (162包括牧场原有的草和6天新长的草。)

(2)23头牛9天所吃的牧草为:23×9207 (207包括牧场原有的草和9天新长的草。)

(3)1天新长的草为:(207162)÷(96)15

(4)牧场上原有的草为:27×615×672

(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(2115)72÷612()

所以养21头牛,12天才能把牧场上的草吃尽。

 

第二种:公式解法

有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,假设每头牛吃草的量是相等的。(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,最多可放多少头牛?

解答:

1) 草的生长速度:(21×8-24×6)÷(8-6)=12()

原有草量:21×8-12×8=72()

16头牛可吃:72÷(16-12)=18()

2) 要使牧草永远吃不完,则每天吃的份数不能多于草每天的生长份数

所以最多只能放12头牛。

 

 

小学四年级思维数学题及答案和题目分析

一、按规律填数。

16448403634(    )

281510131211(    )

3)14589、(  )、13、(  )、( 

4)2451011、(  )、( 

5)5,9,13,17,21,(    ),(    )

    

二、等差数列

1.在等差数列31221303948,…中912是第几个数?

2.1100内所有不能被59整除的整数和

3.210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?

4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(357),(91113151719212325),(2729、……79),(81、……),求第5组中所有数的和

 

三、平均数问题

1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______ .

2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89,缺考的同学补考各得99,这个班级中考平均分是_______ .

3.今年前5个月,小明每月平均存钱4.2,6月起他每月储蓄6,那么从哪个月起小明的平均储蓄超过5?

4.ABCD四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4,得到下面4个数.

  23, 26, 30, 33

  ABCD 4个数的平均数是多少?

5. ABCD4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次得到下面4个数23263033ABCD4个数的和是。

 

四、加减乘除的简便运算

1100-98+96-94+92-90+……+8-6+4-2=()

21976+1977+……2000-1975-1976-……-1999=()

326×99 =()

467×12+67×35+67×52+67=()

5)14+28+39)×(28+39+15-14+28+39+15)×(28+39

 

五、数阵图

1、△、□、〇分别代表三个不同的数,并且;

   ++=+〇;〇+++=++□;△+++=60

   求:△= = =

2.将九个连续自然数填入33列的九个空格中,使每一横行及每一竖列的三个数之和都等于60.

3.将从1开始的九个连续奇数填入33列的九个空格中,使每一横行、每一竖列及两条对角线上的三个数之和都相等.

4. 199个数编制一个三阶幻方,写出所有可能的结果。所谓幻方是指在正方形的方格表的每个方格内填入不同的数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格的数。

 

六、和差倍问题

1.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?

2.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。

3.甲、乙两个数,如果甲数加上320就等于乙数了.如果乙数加上460就等于甲数的3倍,两个数各是多少?

4.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?

5.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?

6.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?

 

七、年龄问题

1.兄弟俩今年的年龄和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁?

2.母女的年龄和是64岁,女儿年龄的3倍比母亲大8岁,求母女二人的年龄各是多少岁?

3.哥哥今年比小丽大12岁,8年前哥哥的年龄是小丽的4倍,今年二人各几岁?

4.爷爷今年72岁,孙子今年12岁,几年后爷爷的年龄是孙子的5倍?几年前爷爷的年龄是孙子的13倍?

 

八、假设问题

1、有42个同学参加植树,男生平均每人种3,女生平均每人种2,男生比女生多种56.男、女生各多少人?

2.某小学举行一次数学竞赛,15道题,每做对一题得8,每做错一题倒扣4,小明共得了72,他做对了多少道题?

3.一张试卷有25道题,答对一题得4,答错或不答均倒扣1,某同学共得60,他答对了多少道题?

4.小华解答数学判断题,答对一题给4,答错一题要倒扣4,她答了20个判断题,结果只得了56,她答错了多少道题?

5. 育才小学五年级举行数学竞赛,10道题,每做对一道题得8,错一题倒扣5,张小灵最终得分为41,她做对了多少道题?

 

和差倍

果园里有梨树、桃树、核桃树共526棵,梨树比桃树的2倍多24棵,核桃树比桃树少18棵.求梨树、桃树及核桃树各有多少棵?

1、在□中填入适当的数字,使乘法竖式成立。

2、在□中填入适当的数字,使除法竖式成立。

3、天天带了一些苹果和梨到敬老院慰问。每次从篮里取出2个梨和4个苹果送给老人,最后当梨正好分完时,还剩下27个苹果。这时他才想起原来苹果是梨的3倍多3个。原有苹果、梨各多少个?

440名同学在做3道数学题时,有25人做对第一题,有28人做对第二题,有31人做对第三题。那么至少有多少人做对了三道题?

答案:

1.先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。共需要1+10=11分钟。

2.大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)

3.一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。

4.所花的总时间是指这四人各自所用时间与等待时间的总和,由于各自用水时间是固定的,所以只能想办法减少等待的时间,即应该安排用水时间少的人先用。

解:应按丙,乙,甲,丁顺序用水。

丙等待时间为0,用水时间1分钟,总计1分钟

乙等待时间为丙用水时间1分钟,乙用水时间2分钟,总计3分钟

甲等待时间为丙和乙用水时间3分钟,甲用水时间3分钟,总计6分钟

丁等待时间为丙、乙和甲用水时间共6分钟,丁用水时间10分钟,总计16分钟,

总时间为1361626分钟。

5.大家都很容易想到,让甲、乙搭配,丙、丁搭配应该比较节省时间。而他们只有一个手电筒,每次又只能过两个人,所以每次过桥后,还得有一个人返回送手电筒。为了节省时间,肯定是尽可能让速度快的人承担往返送手电筒的任务。那么就应该让甲和乙先过桥,用时2分钟,再由甲返回送手电筒,需要1分钟,然后丙、丁搭配过桥,用时10分钟。接下来乙返回,送手电筒,用时2分钟,再和甲一起过桥,又用时2分钟。所以花费的总时间为:21102217分钟。

解:21102217分钟